Thymic T cell anergy in autoimmune nonobese diabetic mice is mediated by deficient T cell receptor regulation of the pathway of p21ras activation

نویسندگان

  • M J Rapoport
  • A H Lazarus
  • A Jaramillo
  • E Speck
  • T L Delovitch
چکیده

Thymic T cell anergy, as manifested by thymocyte proliferative unresponsiveness to antigens expressed in the thymic environment, is commonly believed to mediate the acquisition of immunological self-tolerance. However, we previously found that thymic T cell anergy may lead to the breakdown of tolerance and predispose to autoimmunity in nonobese diabetic (NOD) mice. Here, we show that NOD thymic T cell anergy, as revealed by proliferative unresponsiveness in vitro after stimulation through the T cell receptor (TCR), is associated with defective TCR-mediated signal transduction along the PKC/p21ras/p42mapk pathway of T cell activation. PKC activity is reduced in NOD thymocytes. Activation of p21ras is deficient in quiescent and stimulated NOD T cells, and this is correlated with a significant reduction in the tyrosine phosphorylation of p42mapk, a serine/threonine kinase active downstream of p21ras. Treatment of NOD T cells with a phorbol ester not only enhances their p21ras activity and p42mapk tyrosine phosphorylation but also restores their proliferative responsiveness. Since p42mapk activity is required for progression through to S phase of the cell cycle, our data suggest that reduced tyrosine phosphorylation of p42mapk in stimulated NOD T cells may abrogate its activity and elicit the proliferative unresponsiveness of these cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Advances in T Cell Signaling in Aging

The immune system of mammalian organisms undergoes alterations that may account for an increased susceptibility to certain infections, autoimmune diseases, or malignancies. Well characterized are age related defect in T cell functions and cell mediated immunity. Although it is well established that the functional properties of T cells decrease with age, its biochemical and molecular nature is...

متن کامل

Intrinsic defects in the T-cell lineage results in natural killer T-cell deficiency and the development of diabetes in the nonobese diabetic mouse.

T-cell-mediated autoimmune diabetes in nonobese diabetic (NOD) mice is closely associated with natural killer T (NKT)-cell deficiency. To determine whether intrinsic defects of the T-cell lineage contribute to the pathogenesis of the disease and NKT cell deficiency, we reconstituted the T-cell compartment in NOD.scid or BALB.scid mice with T-cells from NOD, nonobese diabetes-resistant (NOR), or...

متن کامل

Impaired Plasma Membrane Targeting of Grb2–Murine Son of Sevenless (mSOS) Complex and Differential Activation of the Fyn–T Cell Receptor (TCR)-ζ–Cbl Pathway Mediate T Cell Hyporesponsiveness in Autoimmune Nonobese Diabetic Mice

Nonobese diabetic (NOD) mouse thymocytes are hyporesponsive to T cell antigen receptor (TCR)-mediated stimulation of proliferation, and this T cell hyporesponsiveness may be causal to the onset of autoimmune diabetes in NOD mice. We previously showed that TCR-induced NOD T cell hyporesponsiveness is associated with a block in Ras activation and defective signaling along the PKC/Ras/MAPK pathway...

متن کامل

Grafts of supplementary thymuses injected with allogeneic pancreatic islets protect nonobese diabetic mice against diabetes.

In nonobese diabetic (NOD) mice, the autoimmune attack of the beta-cells in pancreatic islets is now believed to result from abnormal thymic selection. Accordingly, grafts of thymic epithelium from NOD donors to athymic recipients promote autoimmune islet inflammation in normal strains, and intrathymic islet grafts decrease the incidence of disease in NOD animals. Two competing hypotheses of ab...

متن کامل

Materno-Fetal Transfer of Preproinsulin Through the Neonatal Fc Receptor Prevents Autoimmune Diabetes.

The first signs of autoimmune activation leading to β-cell destruction in type 1 diabetes (T1D) appear during the first months of life. Thus, the perinatal period offers a suitable time window for disease prevention. Moreover, thymic selection of autoreactive T cells is most active during this period, providing a therapeutic opportunity not exploited to date. We therefore devised a strategy by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 177  شماره 

صفحات  -

تاریخ انتشار 1993